The extent of *UMOD* gene polymorphism and its level in type 2 diabetes patients

Rasha Abd Ali Al-khalidi¹*, Israa Ayoub Alwan², Hadeel Abdelelah Abdel Razaaq³

¹Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
²Department of Medical Laboratory Technique, Al-ma’noon University College, Baghdad, Iraq
³Department of Biology, College of Science, University of Anbar, Anbar, Iraq

*Corresponding author: rasha.molmed@gmail.com (Al-Khalidi)

Abstract

Background & objectives: Uromodulin is a protein produced only in cells of the kidney tubular and get out with urine. Some the mutations which lead to uromodulin isfolding leads to retention in the kidney, and that promote the immune response to the system to cause infection of the kidney disease such as diabetic nephropathy (DN), that is one of the kidney diseases occurring as a result of diabetes. Our study found accompanied by rs4293393 variation of the UMOD gene as well as the susceptibility to renal illness in patientsexperiencing Type-2 diabetes mellitus.

Methods: 100 samples are including 50 with diabetes and 50 healthy controls, aregenotyped for UMOD variant rs4293393T>C via RT-PCR. ELISA tested the uromodulin concentration. In addition, the uric acid, creatinine and ureaconcentration were performed via auto analyserA15 Biosystems instrument.

Results: The results show significantly higher levels of creatinine (mg/dl), urea(mg/dl) and uric acid (mg/dl) in DN patients than in those fromthe control group, while serum UMOD was highly significant in group of controls relative to the group of patients. Also, the T allele is more common in controls than in patients, while the C allele is more common in patients than incontrols. A considerable change was identified in comparisons between type-2 diabetes patients and kidney diseases and control groups in the T allele. Comparing genotype to UMOD serum level, there was no statistical difference (Pmore than 0.05) between the control group and TC or CC genotypes, and significant differences (Pless than 0.05) in control group UMOD levels compared with TT genotypes.

Conclusions: The frequency related to C allele and UMOD rs4293393 variant was markedly more than in individuals with DN.

For correspondence: Rasha Abd Ali Al-khalidi, Ph.D., Tel: (+0964) 07832582957; email: rasha.molmed@gmail.com

Keywords: diabetic nephropathy, UMOD gene, uricacid, urea, creatinine

Introduction
The UMOD gene encodes a glycoprotein containing a 640-aminoacid named ‘uromodulin’, which is extensively detected in human urine. Uromodulin is expressed in the luminal membrane then released through proteolytic cleavage into the urine (Vylet’al et al., 2006)(Williams et al., 2009). For those reasons, any mutations in UMOD coding regions could elongation of the maturation rate of the protein (Tinschert et al., 2004). Many studies have identified more than sixty mutations of UMOD that help to the occurrence of ADTKD pathogenesis (Williams et al., 2009), and most are small in-frame deletions, mutations (Nakayama et al., 2012).

While the incidence of both type-1 and type-2 diabetes is increasing, the most marked rise is seen among individuals with T2DM1. The most serious complications of diabetes are retinopathy, neuropathy and nephropathy (Harb et al., 2019). The aim of this work is to studying accompanied by rs4293393 variation of the UMOD gene as well as the susceptibility to renal illness in patients experiencing Type-2 diabetes mellitus.

Materials and methods

Sample collection and analysis
Blood samples from 50 patients suffering from diabetic nephropathy (DN) were collected at Al-Yarmook teaching hospital in Baghdad. These samples came from 25 males and 25 females aged between 35 and 85. In addition, samples from 50 healthy subjects were collected, and all participants gave written informed consent. ELISA was used for estimating human UMOD (uromodulin) utilizing ELISA kit based on the manufacturer’s instructions (MyBioSource, USA). Also, DNA has been extracted from blood through utilizing ZYMO Quick-DNA Miniprep Kit (Cat# D3025), depending on company directions. Genotyping of one common polymorphism (rs4293393) of UMOD gene was conducted using TaqMan® SNP Genotyping Assays (Cat# 4331349) using the RT-PCR instrument.

Statistical analysis
Representing the data is mean±standard deviation. In addition, the differences between groups are put to test utilizing t-test and Student Q-square test, while the allelic as well as genotype association related to SNP are estimated utilizing odds ratio (OR), Pearson chi-square test, and (95%) of the intervals of confidence are specified. To compare more than 2 groups, one-way ANOVA is utilized. Two-tailed (P less than 0.05) was considerable. All analyses tests were achieved via SPSS 16.0 software.

Results
The average ages of the DN and control groups were 57±7.76 and 36.12±2.25, respectively. In addition, the number of males that show the DN compare to the control was 31/25, while the number of females that shows the DN compare to the control group was 19/25. The average of BMI (kg/m²) in the DN and control group was (29.4±2 and 23.6±3.09), respectively, as seen in the table below:
Among a total of 50 patients and 50 controls, the results for diabetic patients with kidney disease show significantly higher levels of creatinine (mg/dl), uric acid (mg/dl) and urea (mg/dl) than for those in the control group, as presented in Figure 1.

The values of serum UMOD are illustrated in Figure 2 and are highly significant in the control group in comparison to those in the group of patients (DN).
RT-PCR was performed in order to reveal the genotype of rs42993393 T > C, each genotype T or C was targeted by a specific probe labelled with a different dye. After completion, each probe was detected according to its colour dye: T appeared in Fam (green) and C appeared in Hex (blue), the amplification curves were shown in Figure 3.

Table 2 illustrates the genotype distribution of the UMOD gene in healthy controls and patients. A TT allele (homozygous) genotype is more likely to be found in controls than in patients. The T allele is more common in controls than in patients, while the C allele is more in the group of patients compared to the group of controls. Considerable changes in T allele were identified in the comparison between kidney disease patients with 2DM and control group. The odds ratio in comparing controls with patients for TT subjects was 0.53 (95% CI, 0.31–1.08), while for TC subjects it was 1.56 (95% CI, 0.81–2.99) and for CC subjects it was 2.04 (95% CI, 0.51–8.43).
The results show, when comparing between genotype and serum UMOD level, that there were no statistical differences (P > 0.05) among the group of controls, TC and CC genotypes, and a significant difference (P < 0.05) in the level of UMOD in the group of controls in comparison to TT genotype, as can be seen in Figure 4.

![Figure 4: Correlation between genotype and serum UMOD level.](image.png)

*different letters mean significantly different.

Discussion

Nephropathy can be defined as the major cause of end-stage renal disease (ESRD) despite recent advancements in the diabetes management. Endothelial dysfunction and inflammation have a role in DN’s development. Also, the uric acid was inflammatory and have a role in endothelial dysfunction (Williams et al., 2009; Rampoldi et al., 2003). In addition, such results led us to investigate the uric acid role in initiation and developments of the diabetic nephropathy. In type-2 diabetic nephropathy, we evaluated the uric acid level. Chambers et al. (2010) found the uric acid have related to diabetic nephropathy and the 2MD patients showed that the uric acid developed to nephropathy, that similar to our study.

The easiest approach for monitoring the kidney function was to test the blood for urea and creatinine (Molitoris et al., 2007). The typical creatinine level is between 0.8 and 1.4 mg/dL. Usually, females have low creatinine (0.6-1.2 mg/dL) compared to males as they are typically having low muscle mass (Molitoris et al., 2007). The creatinine level depended on the muscle mass. Thus, the concentration of

http://doi.org/10.36295/ASRO.2020.231803
plasma creatinine was extremely stable and a direct reflection related to skeletal muscle mass (Martin et al., 2003). Interestingly, another study found that low creatinine in serum has occurred with an increased risk of 2DM, that lead to a decrease in the volume of skeletal muscle (Harita et al., 2009). The voluntary muscle is the main target via the insulin, and a low muscle volume indicates fewer target of insulin (insulin resistance) and that development of 2DM, the pathogenesis of 2MD associated with decreasing of the creatinine as (Dabla et al., 2010).

This work attempted on linking kidney disease and UMOD gene variant rs42993393 in Iraqi individuals experiencing 2-diabetes, such SNP, which is located 550bp upstream of the uromodulin site of transcription, was associated to kidney diseases in various researches (Troyanov et al., 2016; Köttgen et al., 2010; Gudbjartsson et al., 2010). Also, the frequency related to C allele as well as TC+CC genotype is different in the general populations of the persons experiencing diabetes in comparison to the group of controls, while the frequency related to C allele is high in DN patients compared to the group of controls, in accordance with the presented work, the results of this study indicating that C allele and C allele genotype might show a risk of kidney disease in person experiencing diabetes.

A study conducted by Gudbjartsson et al. (2010) indicated that patients experiencing type-II diabetes which carries the T allele had high levels of the serum creatinine after the age of fifty, in comparison with the one with no such variants. A study which has been conducted by Köttgen et al. (2010) examined functional links between such SNP and uromodulin secretion, the researchers identified that more uromodulin’s secretion precedes CKD development. In addition, the allelic frequency and genotype distribution regarding such SNP in the population of this work is different from past researches (Troyanov et al., 2016; Köttgen et al., 2010; Gudbjartsson et al., 2010). Yet, other researches indicated that either no differences in the frequency related to rs-42993393 genotype/allele in the patients experiencing urinary tract infections in multicentric cohort research (van der Starre et al., 2015) or protection against kidney stones (Gudbjartsson et al., 2010).

In the presented work, it has been indicated that the serum uromodulin levels in persons with DN were reduced in comparison to the group of controls, this is different from a work carried out via Kumar indicating increased serum uromodulin levels in persons with DN (Kumar et al., 2017). Yet, the level wasn’t impacted via the distributions of rs-4293393 genotype. Furthermore, a previous work in nondiabetic persons assumed that lower urinary as well as higher uromodulin serum levels are related to kidney diseases (Prajczer et al., 2010).

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Acknowledgements

This study was self-funded by the authors. We thank the Wahj AL DNA Company for coordinating the lab work of the project.

Author contributions
The experiment was designed as follows: Dr Israa. A. Alwan performed the experiments (ELISA). Dr Rasha Al-khalidi performed the real-time PCR experiment. Dr Hadeel A. A. Razaak analysed the data. All authors shared the writing and proofreading of the manuscript.

References

