The Effect of Special Exercises by Using Swedish Benches on Developing the Power and Three Attacking Skills and the CK Enzyme for Handball Players

1 Assist. Prof. Dr. Mushreq Aziz Tunash AL-Lamiy*
2 Assist. Prof. Dr. Hikmat Adil Aziz AL-Lami
3 Assist. Lecture. Shahlaa Abdulhadi Lhimass AL-Zihayyim

1 College of Physical Education and Sports Science, University of Al-Qadisiyah, Diwaniyah city, Iraq.
2 College of Medicine, University of Al-Qadisiyah, Diwaniyah city, Iraq
3 Ministry of Education, The General Directorate of Diwaniyah Education Sport and School Activity Section

*Corresponding Author: hikmat.allami@qu.edu.iq (Al-Lami)

Abstract:

The study aims at preparing exercises using Swedish benches and identifying the effects of these exercises on the power, three attacking skills (dribbling, passing, and shooting), and the CK Enzyme of handball players in Diwaniyah city.

The two researchers used the experimental method for convenience in tackling the study problem and deliberately determined the research community. It included 18 players of the Al-Saniyah Handball Club for the younger category during the sports season (2016-2017). The 18 players, whose heights were ± 179.2 cm, weights ± 71 kg and aged ± 17, were randomly divided into two groups. Each group had nine players, and the experimental group was given exercises to use the Swedish benches prepared by the two researchers. The controlling group applied the items of the training curriculum prepared by the coach. The researchers conducted power tests and some attacking skills and measured the CK Enzyme of the players. The study indicates that, with only three units per week, eight weeks of Swedish bench suitably adapted exercise with and without a ball, and using the interval training brings forth significant enhancements in power and some of the attacking skills and the CK Enzyme.

The results demonstrated the computational and standard deviations, the dependent and independent T value of power tests (arms, legs, and abdomen), the three attacking skills (dribbling, passing, and shooting), the CK Enzyme and analyzed the difference between the experimental group and the controlling group.

The study concludes that it is possible to depend on the exercises of Swedish benches as effective tools in developing the distinctive power of some attacking skills (dribbling, passing, and shooting) and the CK Enzyme.

Keywords: Swedish Benches, Power, Attacking Skills, the CK Enzyme, Handball

How to cite this article: Tunash Al-Lamiy MA, Aziz Al-Lami HA, Lhmias Al-Ziyayyim SA (2020): The effect of special exercises by using Swedish benches on developing the power and three attacking skills and the CK enzymes for handball players, Ann Trop Med & Public Health; 23(S16): SP231628. DOI: http://doi.org/10.36295/ASRO.2020.231628

Introduction:

In the sport of handball, like any other group sports, physical ability and high skills prompted by modern technology are required to enable the players to perform to the highest level to participate in handball matches with its various physical, skillful and physiological requirements. However, through the variation and renewal in training methods, they keep pace with the game’s evolution, enhancing the spirit of excitement, concurrence, and agitation of its performance. Furthermore, handball is defined as a sport where effectual execution requires incessant body contact and the ability to make repeated explosive muscular contractions required for jumping, increasing speed, sprinting, turning, changing pace, and throwing a ball (1),(2),(3),(4).

http://doi.org/10.36295/ASRO.2020.231628
Some of the special physical abilities, like the power that comes together with strength and speed, are commonly used and have a significant role in the performance of attacking skills. They reflect one’s perfect performance accuracy (in terms of dribbling, passing, and shooting) quickly after getting the ball in different defense situations or immediately after throwing the ball to start as fast as the opponent’s team retreats by using offensive skills to score as many goals as possible. The power and the performance of important attacking skills are necessary to pay attention to them and work on their development and improvement. In addition to it is the role of the CK Enzyme, which functions to increase the chemical reactions to rebuild the ATP by the fusion of the CP and a chemical source stored in the muscles. Power is the greatest drive that the neuromuscular system could create in a given time. Intensive loads are essential in developing power since high strengths are related to maximal speed unit enrollment as indicated by the principle of the size, with units additionally terminating at higher frequencies.

The use of helping and appropriating tools is an important part of training; it will help players achieve progress in this sport and could be an important indicator to assess the efficiency of their attacking and defensive skills. Helping tools work on accelerating the learning process and the availability of assistance tools. This leads to increased self-confidence and growth and development of physical and potential skills and the attendant suspense to the players through their action and moving that has a positive and effective impact on developing attacking skills.

To develop the players’ physical ability and enhance their skills, the researchers have adopted special exercises using the Swedish bench (physical - skill), which may have a significant role in improving the players’ physical ability. Hence, that will contribute to the change in the development of the power of speed, some attacking skills (dribbling, passing, and shooting), and the CK Enzyme. Regarding the aforementioned, Biai argues that the performance skill for any sport game basically relied on physical preparations specified in muscle power.

According to the expert’s experience, it has been found that using the Swedish bench as a training method is more effective and productive in improving the performance, speed, strength, and attacking skills and the CK Enzyme for Handball players. Therefore, the researchers find that using the Swedish bench depending on exercises on developing players’ strength, speed, and attacking skills and the CK Enzyme can achieve the target of the research.

The study aims to prepare exercises using Swedish benches and identify the effects of these exercises on the speed and some attacking skills and the CK Enzyme of handball players in Al-Diywaniyah city. The hypothesis of the research reflects the positive effect of the exercise method of using Swedish benches in the development of power and the attacking skills and the CK Enzyme for Handball players.

Procedures:

Material and Methods:

The present study has identified the experimental method as the appropriate method to solve the research problem and achieve its objectives. The experiment protocols were approved by the Ethical Committee of the College of Medicine, University of al-Qadisiyah. Also, informed consent was obtained from all study participants prior to sample collection.

Community and Study Sample:

The study was identified in the research community in a deliberate manner. It included players of the Al-Saniyah Handball Club for the younger category during the sports season (2016-2017). Twenty-one players participated in this study, excluding the goalkeepers. The remaining eighteen players were randomly divided into two groups. Each group had nine players. The experimental group (whose heights were ± 179.2 cm, weights ± 71 kg and ages ± 17) was given the exercises to use the Swedish benches prepared by the two researchers. The controlling group has applied the items of the training curriculum prepared by the coach.

Instruments, Means, and Devices Used in the Study:

(Note: Arabic sources and references timing clocks handballs (12) – 40 x 40 cm steel benches handball field plastic figures 12 adhesive tape Swedish benches (No.6, made of wood, length 4 m, width 27 cm, height 35 cm - High jump device, kit to determine the level of the CK Enzyme, medical injections, plan tubes).

Tests used in the study:

1. Testing the power of the arms: from the oblique position, bending and extending the arms (maximum number in 10 seconds), measurement unit (numbers) (10).
2 – Testing the power of the legs: side jump from above the Swedish bench for 10 seconds, measurement unit (numbers)\(^{(11)}\).

3 - Testing the power of the abdomen: sit and hold for 10 seconds, measurement unit (numbers)\(^{(12)}\).

4 - Testing the dribbling for a distance of 30 m in a zigzag line, back and forth for 10 seconds, measurement unit (numbers of seconds)\(^{(13)}\).

5 - Testing the speed of passing and compatibility on the wall: a distance of 4 meters for 60 seconds, measurement unit (numbers of seconds)\(^{(8)}\).

6- Testing the accuracy of high jump shooting (10 balls), measurement unit (numbers)\(^{(13)}\).

Pre-test:

On the first day: on Saturday, 6/8/2016, at 4 pm in the Diwaniyah Hall, the test of the power of the legs was conducted. Blood samples were taken from the participants before the test, as the players were at a state of complete rest and were not performing any physical activity. 3cc of blood were taken to measure the CK Enzyme. The blood samples were placed into special tubes allocated to preserve the blood, with the number of the player indicated before the test. The test of the power of the legs – side jump from above the Swedish bench for 10 seconds – was conducted. After that, another blood sample was taken from each player via the same procedures above. However, these blood samples were taken five minutes after the test.

On the second day, Monday, dated 7/8/2016, the tests of the two remaining attacking skills of handball (arms & abdomen) were conducted, with sufficient rest for players between the tests.

On the third day, Tuesday 8/8/2016, the test of the three attacking skills (dribbling, passing & shooting) were conducted, with sufficient rest for players between the tests.

Exercises by using Swedish benches:

(Intensity: from 75 to 95%, Frequency: 3 – 6, Sets 2-4 Sets, Convenience: Among the duplicates: Pulse 120 - 130 BPM, rest between the drills are (2 min), The load variables are from 3-1, Duration: 8 weeks, Training sessions: 3 units per week, Intervention in the main section, Exercise with and without a ball (24 exercises), Interval training).

Post-test: The post-test was conducted on the days (Saturday, Sunday & Monday) 8, 9, 10 / 10/2016; the same conditions as the pre-test were taken into account.

Statistical Methods: Statistical program SPSS was used in this study to count the value of dependent and independent T-test.

Results:

<table>
<thead>
<tr>
<th>Changeable</th>
<th>Group 1</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power of the arms 10 sec</td>
<td>Pre-test</td>
<td>10.22</td>
<td>0.97</td>
<td>-9.06</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>14.78</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power of the legs 10 sec</td>
<td>Pre-test</td>
<td>12.89</td>
<td>0.33</td>
<td>-25.30</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>17.33</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power of abdomen 10 sec</td>
<td>Pre-test</td>
<td>9.00</td>
<td>1.00</td>
<td>-16.44</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table (1)

Shows the computational values, the standard deviations, and T-value for the results of power
Table (1) shows the value of (T); since the level of (P) is (< 0.05), then the difference is significant between the pre and post-tests in favor of the post-test.

Table (2)

Shows the computational values, the standard deviations, and T-value for the results of power and some attacking skills tests in pre and post-test of the controlling group.

<table>
<thead>
<tr>
<th>Changeable</th>
<th>Group 2</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power of the arms 10 sec</td>
<td>Pre-test</td>
<td>10.33</td>
<td>0.87</td>
<td>-10.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>12.56</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power of the legs 10 sec</td>
<td>Pre-test</td>
<td>12.67</td>
<td>0.50</td>
<td>-5.55</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>14.89</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power of the muscles of the abdomen 10 sec</td>
<td>Pre-test</td>
<td>9.22</td>
<td>0.83</td>
<td>-16.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>11.89</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dribbling 30 m</td>
<td>Pre-test</td>
<td>7.91</td>
<td>0.19</td>
<td>18.07</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>6.92</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passing 60 sec</td>
<td>Pre-test</td>
<td>38.44</td>
<td>1.51</td>
<td>-11.09</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>41.33</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shooting 10 balls</td>
<td>Pre-test</td>
<td>4.22</td>
<td>0.67</td>
<td>-12.09</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>6.00</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (2) shows the value of (T); since the level of (P) is (< 0.05), then the difference is significant between the pre and post-tests in favor of the post-test.

Table (3)

Shows the computational values, the standard deviations, and T-value for the results of power, and some attacking skills tests for the experimental and controlling group.
Table (3) shows the value of (T); since the level of (P) is (< 0.05), the difference is moral between the post-test of the experimental and control groups in favor of the experimental group.

Table (4)

Shows the computational values, the standard deviations, and T-value for the pre and post-test results of measuring the CK Enzyme for the experimental group.

Table (5)

Shows the computational values, the standard deviations, and T-value for the pre and post-test results of measuring the CK Enzyme for the controlling group.
Before the Test

<table>
<thead>
<tr>
<th>After conducting the exercises</th>
<th>Before the Test</th>
<th>82.89</th>
<th>4.96</th>
<th>55.11</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>After the Test</td>
<td>168.56</td>
<td>9.53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (5) shows the value of (T); since the level of (P) is (< 0.05); the difference is moral in favor of the post-test before and after applying the exercises of measuring the CK Enzyme of the controlling group.

Table (6)

Shows the computational values, the standard deviations, and T-value for measuring the CK Enzyme for the experimental and controlling groups.

<table>
<thead>
<tr>
<th>CK Enzyme</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before conducting the exercises Group 1 After the Test</td>
<td>71.44</td>
<td>3.36</td>
<td>0.38</td>
<td>0.00</td>
</tr>
<tr>
<td>Group 2 After the Test</td>
<td>70.78</td>
<td>3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1 Before the Test</td>
<td>137.33</td>
<td>6.48</td>
<td>1.38</td>
<td>0.00</td>
</tr>
<tr>
<td>Group 2 Before the Test</td>
<td>126.22</td>
<td>23.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After conducting the exercises Group 1 After the Test</td>
<td>91.11</td>
<td>3.98</td>
<td>3.97</td>
<td>0.00</td>
</tr>
<tr>
<td>Group 2 After the Test</td>
<td>80.22</td>
<td>7.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1 Before the Test</td>
<td>195.00</td>
<td>9.54</td>
<td>5.88</td>
<td>0.00</td>
</tr>
<tr>
<td>Group 2 Before the Test</td>
<td>168.56</td>
<td>9.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (6) shows the value of (T) of measuring the CK Enzyme before applying the exercises of the controlling and experimental groups before the test. Since the level of (P) is (> 0.05), then the difference is random. Also, it shows the value of (T) of measuring the CK Enzyme after applying the exercises of the controlling and experimental groups after the test. Since the level of (P) is (< 0.05), then the difference is moral. Also, it shows the value of (T) of measuring the CK Enzyme after applying the exercises of the controlling and experimental groups after the test. Since the level of (P) is (> 0.05), then the difference is moral.

Discussion:

This study aimed to assess the effectiveness of an 8-week Swedish bench training program as a means of improving power and maximal strength for the arms, legs, and abdomen and increasing some attacking skills of players like dribbling, passing, shooting, and the CK Enzyme. It also aimed to know the differences between the experimental group and the controlling group.

All figures and tables reveal the computational values, standard deviations, and T dependent and independent values for the results of power tests (arms, legs, and abdomen) and some attacking skills (dribbling, passing, and shooting) and the CK Enzyme of the players of Al-Saniyah Handball Club.

The findings of this study substantiate the hypothesis that the Swedish bench-training program can enhance the development of power and improve the attacking skills of dribbling, passing, shooting, and the CK Enzyme. These results were significantly presented and discussed for the pre- and post-testing of the experimental group and the controlling group. The improvement appeared clearly in the results of the experimental group more than in the controlling group. Previous studies examined the improvement of the handball player’s skills, but the present study is the first one to use the Swedish bench sport on developing the power and the attacking skills of handball players.
Data in this study (Table 1) showed the differences in the value of power tests (arms, legs, and abdomen) and some of the attacking skills (dribbling, passing, and shooting) and the CK Enzyme. The quality of sample members showed differences between two kinds of tests tending to the post-test within the pre and post-test for the experimental group.

The arms power test had a T-value of 9.06, the T-value of legs power is 25.30, and the T-value of testing abdomen power is 16.44. For the dribbling test, the T-value is 40.06, the T-value of testing passing is 11.07, and the T value of 12 is for the shooting test. The value of (P) being <0.05 for all the above tests show the significant differences between the pre- and post-tests tend to post-test for the experimental group.

Table (2) shows the differences in the values of power tests (arms, legs, and abdomen) and some of the attacking skills (dribbling, passing, and shooting) in the pre- and post-test of the controlling group. Therefore, the nature of the sample members showed the differences between the two tests tend to post-test.

In the arms power test, its T-value is 10; the T-value of testing leg power is 5.55, and the T-value of testing the abdomen power. The dribbling test T-value is 18.07, the T value of testing passing is 11.09, and the T-value of 12.09 is to test shooting. The (P) of < 0.05 for all the above tests shows the significant differences between the pre- and post-tests tend to post-test for the controlling group.

Whereas (Table 3) showed the differences in the value of power tests (arms, legs, and abdomen) and some of the attacking skills (dribbling, passing, and shooting) in the post-test of controlling and experimental groups. Therefore, the nature of sample members showed the differences between the two groups tend to the experimental one.

In the arms power tests, the T-value is 6.76, the T-value of testing leg power is 7.90, and the T-value of testing the power of the abdomen is 8.49. The T-value of dribbling tests is 11, and the T-value of testing passing is 7.25, and the value of testing shooting is 6.10. The (P) is < 0.05. Therefore, the nature of sample members showed the differences between the two groups tend to the experimental one.

The researchers attributed these differences between the experimental group and the controlling group of pre- and post-tests to the use of Swedish benches and exercises they prepared. This method showed how the intensity of the exercise gradually rises and then falls heavily in the exercise itself. The properties of this method are varying in the items of exercise, linking each strength to the speed with an attacking skill. The trainer, in planning the training program, focused on improving the energy system associated with performance in handball, as well as on the use of qualitative and specialized training that aimed at upgrading and developing the basic skills of the sport and the muscles working during a performance. To extend a person’s execution within the team in handball, we propose essential power training (Swedish bench, squats, and trunk rotation) (3), (14).

The researchers believed that players should have speed, strength and subsequently be given mobility to use their physical abilities. Their role in mastering attacking skills may have a significant role in improving their performance, as well as in giving their teams confidence to achieve good results in winning sports. The results of the experimental groups showed that the speed characteristic of strength in the sport plays an important role as one of the properties of the physical components that characterize sports, including handball (15).

The results of the power tests show that some of the attacking skills were efficiently developed in members of the experimental group. In fact, the development of power in the arms, legs, and abdomen evolved attacking skills. Also, the style of Swedish benches was mostly related to the arms, legs, and abdomen, thought their movement throughout the exercise was very numerous. Where the training is characterized by a dynamic, strong, and resistant character to fatigue resulting from training, there is a positive relationship between the level of performance accuracy of handball shooting and the most important physical fitness element in handball, which is the power. Elite handball players achieve some increase of the attacking skills than their lower-level peers. The speed performance in some of the attacking skills improved over the eightweeks of training. These results seem in accord with Hermassi’s study, who noted an increase in some of attacking skills after eightweeks of heavy resistance training, and with the improvement that has followed in 8 weeks of training. (16), (17), (18), (19).

In addition, exercises were oriented to treat circumstances and requirements through the development of the most important physical abilities and speed. Such work is to be replicated for developing them to the maximum extent possible to make the player reaches high levels of performance to achieve the goal to win in sports. The exercises focusing on the power of the arms and legs lead to a high level of long attacking accuracy during the jump of the handball player.

High-level training oriented on developing sports practices requires the maximum extent possible to reach the highest levels of sports. At the physical preparation period, the physical attributes have been linked with the increase of

http://doi.org/10.36295/ASRO.2020.231628
movement skills. The player cannot achieve the basic optimal performance of movement skills for the practice activity unless he has the necessary physical qualities required to perform the skill. For example, a handball player cannot master the skill of attacking by jumping up or down in the event of a lack of power.\footnote{21}

In respect of the strength tests of speed and some of the attacking skills of the second controlling group, we observe a slight development through the adjustments that the player received from the training prepared by the coach. These skills depend primarily on physical abilities; passing is a key for the game plans and the completion of the attacking process. Therefore, the different passing instructions used during competitions must be completed, in addition to the accuracy of the performance of the ball.\footnote{22} The research has been presented and discussed for the pre- and post-testing of the experimental group and the controlling group.

Tables 4 & 5 show that there are moral differences between the level of the CK Enzyme before and after the test and before and after applying the exercises, which is in favour of post-testing for the two groups. The researchers attribute this to the fact that one of the main functions of the enzymes is expediting the chemical reactions inside the muscular cell to release required energy. Therefore the function of the CK Enzyme is restoring the ATP by oxidizing the CP. The released energy is a direct source for the energy used by the muscle in implementing the required activity. However, the quantity of the ATP stored in the muscle is so little and not enough to produce energy sufficient for no more than a few seconds. Thus, without the existence of ATP in the muscular cell, there won’t be any motion or muscular contraction.\footnote{23}

The process of restoring the ATP happens quickly to provide the required energy for the muscular activity that the power requires. Therefore, the increase in the CK Enzyme activity is done through increasing the CK level (concentration) inside the muscular cell. It enters as a helping factor to increase the anaerobic metabolism inside the muscular cell, which leads to expediting the muscular contraction and the power for the player for a specific period. In other words, the muscle activity is accompanied by a series of reactions in which the enzymes contribute as helping factors. This way, the enzyme’s activity that function as helping factors increases clearly in the anaerobic metabolism due to exercising.\footnote{24}

Table 6 shows the percentage of the CK Enzyme level (concentration) before and after applying the exercises. However, there were no moral differences between the two groups, which means that the CK Enzyme levels for the individuals of the study sample were within the normal limits and that there is no effect in the work of the CK Enzyme.

Also, table (6) shows that there are moral differences in the two groups in the CK Enzyme level before the test and after applying the exercises. This shows that the percentage of the increase in the CK Enzyme for the experimental group was very big in comparison to the controlling group. The researchers attribute this to the application of the exercises prepared by the researchers by the individuals of the experimental group. This can be an indicator of the percentage of the CP that is formed as an essential material for the enzyme work (function). The average of the reaction speed, which is stimulated by the enzyme, is in direct proportion with the enzyme level (concentration) when the essential material is found in abundance in the reaction perimeter.\footnote{25} This is in addition to the fact that the Sweden bench exercises contributed to increased aerobic metabolism inside the cell-like ATP-CP. This also leads to an increase in the activity of the enzymes responsible for producing energy and increasing the anaerobic energy reservoirs of ATP-CP. Studies proved that the anaerobic exercise leads to the increase in the ATP reservoirs by 40% to 60% and the reservoir of CP to 60 – 80%\footnote{26}.

Regarding the level (concentration) of the CK Enzyme after applying the exercises, table 6 shows moral differences between the two groups in the concentration percentage of this enzyme, which indicates that the percentage increase of the CK Enzyme in the experimental group was higher than in the controlling group. The researchers believe that this increase is normal according to the development of the player’s power. This indicates the fact that increasing the player’s power after applying the exercises is the result of the increase in the activity of the aerobic metabolism enzymes along with the increase in the (CP) to which the activity of the CK Enzyme is connected. Also, regular (organized) exercising based on scientific foundations and all these factors contributed to developing the player’s ability and some attacking skills. From all that, we infer that the increase in the exercising (training) status of a player is accompanied by an improvement in the internal body parts (organs). The experts in the field of sport exercising physiology rely on the fact that the bodily and the physiological adjustments and adaptations are a result of the player’s adherence to regular and systematic training programs.

In addition, it has been discovered that the activity of the CK Enzyme is 36% more after a training program of 8 weeks. This means the training doesn’t only increase the muscular storage from the CP only, but it also increases the average damage. This clearly shows the extent of the pertinent interest increase out of increasing the supply and increasing the damage of the (CP) for energy production, which are the results of the application of suitable training programs.
Therefore, the hypothesis of the research reflects the positive effect of the exercise method of using Swedish benches in the development of power and the attacking skills for

Conclusions:

Exercises using Swedish benches contribute much to the development of the power and some of the attacking skills of handball players. Priority in the development was for the experimental group. The exercises focused on the research objectives of developing power and some attacking skills in handball of the players. The current study indicates that with only three units per week and eight weeks of in-season Swedish benches training, with suitably adapted exercise with and without the ball, it showed considerable enhancements in power and some attacking skills. When the mechanisms are perceived, it may be possible to realize an even faster increase in power and some attacking skills.

References:

