Studying the impact of vitamin D deficiency in Iraqi acromegalic patients and its relation with some biochemical parameters

Amer Hasan Abdullah ¹, Ibtisam Kareem Mohaisn², Aufaira Shaker Nsaif³ and Abeer H. M. Safaryan¹*

¹ Chemistry Department, Science College, Mustansiriyah University, Baghdad-Iraq
² Basic Medical Sciences Department, Dentistry College, University of Missan,Missan-Iraq
³ National Diabetes Centre, Mustansiriyah University, Baghdad-Iraq

Abstract:
Acromegaly is described as a less common chronic disease occurring as a result of oversecretion of growth hormone (GH) often from a pituitary adenoma; it is connected to noticeable morbidity and increased mortality. Our study aimed to determine calcium (Ca) and vitamin D status in acromegalic patients regarding disease activity and estimating the relationship between vitamin D, IGF-1 and some biochemical parameters. Correlations of vitamin D with IGF-1, BMI, Ca, GOT, GPT, ALP, T3, T4, TSH, urea and creatinine were studied. The study groups comprise of 50 male, 25 acromegalic patients and 25 control male groups. The results of vitamin D measurements showed a decrease levels of vitamin D in all acromegalic patients and this revealed that patients with acromegaly have a high significant decrease (p < 0.001) of BMI, IGF-1, vitamin D, Ca, GOT and creatinine compared to control group, while significant increase for GPT, ALP, T3, T4 and urea for patients with acromegaly. However, the results showed a highly positive significant association between vitamin D and BMI, IGF-1, urea, creatinine and T4 levels, whereas demonstrated a highly significant positive correlation of vitamin D levels with GOT and ALP, also the results showed non-significant difference between vitamin D, Ca and T3 with a negative correlation with TSH also as significant positive correlation between vitamin D and GPT appeared. We concluded that acromegalic patients were suffering from low vitamin D levels compared to the controls group and also suffering from lower kidney activity (hydroxylation at the position of 25-OH-D3 site) and this is evident from the high creatinine levels in the blood, which leads to the non-activation and even low levels of vitamin D and therefore acromegalic patients will suffer from vitamin D deficiency high risk thus the treatment procedures for acromegaly should include doses of active vitamin D, which reduces the risk of this deficiency.

Keywords: Acromegaly, Vitamin D,Calcium, Insulin-like growth factor-1

Introduction:
Acromegaly is defined as a less common chronic disease caused by hyper-secretion of growth hormone (GH) usually from a pituitary adenoma and connected to noticeable morbidity and increased mortality (¹). Acromegaly affects nearly three cases in a million people each year in the western world, while the statistics estimate that the prevalence rates range between (5 to 9) cases out of every (10,000) of the total population in Iraq (²). Insulin-like growth factor-1 (IGF-1) (mainly synthesized in peripheral tissues and liver) mostly mediates by effect of GH; however Anthony and Ioachimescu studied the relation between vitamin D and IGF-1 axis (³). The clinical diagnosis based on symptoms linked to GH excess, is usually delayed due to the insidious nature of the disease (⁴,⁵). It was hypothesized that IGF-1 and IGF binding protein-3 production occur in liver that stimulated by vitamin D through direct transcription regulation and/or by promoting GH stimulation. In kidney as well, IGF-1 increase stimulates the expression of 1α-hydroxylase which increases 1,25-dihydroxy vitamin D level that leads to alteration in calcium-phosphate balance in uncontrolled acromegaly (⁶,⁷).

Several studies illustrated that GH and IGF-1 stimulate 25-dihydroxy vitamin D conversion to 1,25(OH)₂vitamin D via calcium mediatedactivation of 1α-hydroxylase in kidney which elevate calcium and phosphate absorption in the intestine (⁸). Excess of 1,25-dihydroxy vitamin D in rare cases of hypercalcemia can also be encountered that used for acromegaly patients treatment. In acromegaly increased bone desorption could have important role in calcium balance (⁹,¹⁰). In acromegaly patients hypo-vitaminosis D reported (¹¹); also lower peripheral bio-availability of vitamin D had been showed due to the effect of GHexcess secretion on vitamin D binding protein (¹²).

Increased bone turnover had been related to active acromegaly disease \(^{(13)}\) which causes secondary osteoporosis that lead to elevate fracture risk and even morbidity and mortality \(^{(14)}\). Cardiovascular and/or respiratory complications or neoplastic disease are common etiology of death in acromegalic patients. Many studies reported that increased development risk of benign and malignant tumors of various organs, particularly of the colon, thyroid gland, breast and prostate. IGF-1 elevated levels seem to be responsible for cancer risk. It is recalled that IGF-1 is amitogenic, anti-apoptotic and angiogenesis-promoting factor \(^{(15)}\).

Many studies have demonstrated that hypercalcemia, hypercalciuria and mild hypophosphatemia in acromegaly are a result of 1,25-dihydroxyvitamin D3 synthesis \(^{(6)}\), further studies reported vitamin D deficiency in acromegalic patients \(^{(8)}\). An elevated risk of thyroid and colorectal cancer in patients with acromegaly had been shown by other studies \(^{(16)}\). The correlation between structural and endocrine changes in thyroid and patients demographic characteristics, GH levels, and IGF-1 levels in acromegaly remain inconsistent \(^{(17)}\). A web-based acromegaly patient registry has been developed from successive result of acromegaly to demonstrate the hypogonadism in male patients with microadenomas, especially. Also results revealed that hypersecretion of GH and prolactin contributes to the pathogenesis of acromegaly hypogonadism and that could happen in macroadenoma patients even without hyperprolactinemia \(^{(18)}\).

Materials and Methods

1- Subjects:
A group of patients attended the National Diabetes Center, Baghdad during the period from March to September 2018. A total of 50 males (aged 30-40 years) were enrolled in this study: 25 patients with acromegaly and 25 healthy male individuals as a control group. All patients were diagnosed by Physicians.

2- Biochemical Analysis:
Sera were separated from collected blood samples. Levels of GH, IGF-1, vitamin D, Ca, GOT, GPT, ALP, urea, creatinine TSH, T3 and T4 were determined. Serum IGF-1 was determined using IRAMA IGF-1 kit obtained from Beckman Coulter, using the RIA method. Calcium determined by derived O-cresol htaleinComplexone (CPC) method (Moorehead and Briggs, 1974) that allows total Ca concentration determination in serum. Serum GOT, GPT, ALP, urea and creatinine were determined using BioLABO kit from France. For GOT, GPT and ALP the method developed by Henry and Bergmeyer used (following modified IFCC recommendation). While for creatinine colorimetric reaction method was used (Jaffe reaction). Urea determined by enzymatic method. Vitamin D, T3, T4, TSH and were determined using VIDAS kit obtained from Biomerux using EIFA method. BMI was determined by this equation:

\[
BMI = \frac{\text{mass (kg)}}{\text{height (m)}^2}
\]

3- Statistical Analysis:
Results are defined as Mean±SEM, student t-test was applied to compare significance differences between all studied groups. \(P\)-value (\(P<0.05\)) and (\(P<0.001\)) considered statistically significant and highly significant, respectively.

Results:
Table (1) shows a high significant elevation in BMI in patients group G2 compared with control healthy group G1 (\(P<0.001\)), also a significantly higher IGF-1 concentration (\(P<0.001\)) appeared in patients with active acromegaly in contrast with control group as shown in Figure (1). Furthermore, Table (1) revealed that a highly significant decrease (\(P<0.001\)) in vitamin D level in patients group G2 compared with healthy group G1, while Calevel was significantly higher in patients group G2 compared to control group G1 (\(P<0.001\)) as illustrated in Figure (1) as well.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>G1 Control (Mean±SEM)</th>
<th>G2 Patients (Mean±SEM)</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>36.480 ± 0.753</td>
<td>37.120 ± 0.74</td>
<td>NS</td>
</tr>
<tr>
<td>BMI K/m²</td>
<td>26.932 ± 0.667</td>
<td>30.054± 0.664</td>
<td>HS</td>
</tr>
<tr>
<td>IGF-1 (ng/ml)</td>
<td>304.08 ± 8.754</td>
<td>352.400± 14.918</td>
<td>HS</td>
</tr>
<tr>
<td>Vit D (ng/mL)</td>
<td>22.980 ± 0.777</td>
<td>13.692 ± 2.318</td>
<td>HS</td>
</tr>
<tr>
<td>Ca (ng/mL)</td>
<td>8.880 ± 0.128</td>
<td>10.220 ± 0.412</td>
<td>HS</td>
</tr>
</tbody>
</table>

Table (1): Age, BMI and IGF-1 in control and acromegaly patients expressed as Mean±SEM
A statistically significant differences ($P>0.001$) in GOT, GPT, ALP, urea creatinine and hormones of thyroid had been shown in acromegaly patients as compared to control as listed in Table (2). On the other hand, mean levels of GOT and creatinine were lower significantly ($P>0.001$) in control group compared to patients with acromegaly as shown in Figures (2, 3 and 4).

Table (2): Values of GOT, GPT, ALP, Urea, Creatinine, TSH, T3 and T4 in control and patients with acromegaly expressed as Mean±SEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>G1 Control (Mean ± SEM)</th>
<th>G2 Patients (Mean ± SEM)</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOT U/L</td>
<td>23.176 ± 1.103</td>
<td>28.840 ± 1.308</td>
<td>HS</td>
</tr>
<tr>
<td>GPT U/L</td>
<td>28.352 ± 1.092</td>
<td>29.292 ± 1.949</td>
<td>NS</td>
</tr>
<tr>
<td>ALP U/L</td>
<td>188.00 ± 14.096</td>
<td>234.00 ± 27.278</td>
<td>NS</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>25.612 ± 0.738</td>
<td>39.888 ± 2.744</td>
<td>NS</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.7356 ± 0.032</td>
<td>1.00 ± 0.09</td>
<td>HS</td>
</tr>
<tr>
<td>TSH Pmol/L</td>
<td>2.648 ± 0.202</td>
<td>9.570 ± 2.795</td>
<td>S</td>
</tr>
<tr>
<td>T3 Pmol/L</td>
<td>5.436 ± 0.202</td>
<td>5.116 ± 0.444</td>
<td>NS</td>
</tr>
<tr>
<td>T4 Umol/L</td>
<td>16.152 ± 0.515</td>
<td>16.344 ± 1.652</td>
<td>NS</td>
</tr>
</tbody>
</table>

Figure (1): BMI, IGF-1, vitamin D and Ca levels in control G1 and patients G2 groups

Figure (2): Levels of GOT, GPT and ALP in control G1 and patients G2 groups

Annals of Tropical Medicine & Public Health: http://doi.org/10.36295/ASRO.2020.231131
As presented in the table (3), a high positive significant correlation is shown between vitamin D and BMI, IGF-1, urea, creatinine and T4 levels, while a significant highly negative correlation found for levels of vitamin D with GOT and ALP, also the results show a positive non-significant correlation between vitamin D and Ca and T3, negative correlation with TSH and significantly negative correlation with GPT, Figures (5, 6, 7 and 8).

Table (3): Pearson correlation and P-value for vitamin D with the studied parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pearson Correlation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>0.07</td>
<td>HS</td>
</tr>
<tr>
<td>IGF-1</td>
<td>0.563</td>
<td>HS</td>
</tr>
<tr>
<td>Ca</td>
<td>0.572</td>
<td>NS</td>
</tr>
<tr>
<td>GOT</td>
<td>-0.063</td>
<td>HS</td>
</tr>
<tr>
<td>GPT</td>
<td>-0.386</td>
<td>S</td>
</tr>
<tr>
<td>ALP</td>
<td>-0.148</td>
<td>HS</td>
</tr>
<tr>
<td>Urea</td>
<td>0.688</td>
<td>HS</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.707</td>
<td>HS</td>
</tr>
<tr>
<td>TSH</td>
<td>-0.278</td>
<td>NS</td>
</tr>
</tbody>
</table>
Figure (5): Correlation relation between vitamin D and calcium level

Figure (6): Correlation relation between vitamin D and levels of GOT, GPT and ALP
Discussion:

Vitamin D in Acromegaly Patients:
Various medical conditions are associated with the deficiency of Vitamin D like musculoskeletal disorders, metabolic diseases, infection and cardiovascular disease. The decrease in serum vitamin D levels in acromegaly patients could be attributed to inadequate exposure to sunlight and nutritional deficiency, or to etiopathogenetic reasons. Also it may be concluded that insufficiency of vitamin D could cause fatigue, increased disease activity and decreased quality and functional capacity of life.

Annals of Tropical Medicine & Public Health

http://doi.org/10.36295/ASRO.2020.231131
The optimal indicator of vitamin D status is 25-hydroxyvitamin D. Vitamin D3 production occurs in the skin through a two-step process. A non-enzymatic step during exposure to ultraviolet rays in sunlight to convert 7-dehydrocholesterol to pre-vitamin D3 and a temperature-dependent reaction forming vitamin D3 from pre-vitamin D3.

Vitamin D3 bound to vitamin D-binding protein (DBP) is then transported to the liver and metabolized to 25(OH)D, via enzymatic process. Alternatively, vitamin D (D2 or D3), can be absorbed in intestine. By the action of 25-hydroxylase either D2 or D3 is metabolized to 25-hydroxy vitamin D2 or hydroxyl vitamin D3, respectively. 25-Hydroxy vitamin D2 and D3 bound to DBP enter the circulation. 25(OH)D within the renal tubular cell is released from the binding protein, following up take of the DBP-25(OH)D complex by megalin/cubilin in renal tubules and the parathyroid glands.

Endocytic receptors are responsible for the intracellular formation of biologically active 1-α, 25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. The dysfunction of these receptors found in patients with diabetic nephropathy, may explain vitamin D deficiency that occurs in these patients.

After catabolism, 1-α-hydroxylase and 24-α-hydroxylase act on 25(OH)D to generate 1, 25 dihydroxy vitamin D and 24, 25 dihydroxy vitamin D

Several chronic conditions like nephrotic syndrome, critical illness and end stage liver disease where levels of parathyroid hormone are not raised are recognized by low 25(OH)D levels. Moreover, vitamin D may affect metabolic disease, diabetes, metabolic syndrome and insulin resistance.

In our study, concentration of vitamin D was decreased that is in agreement with other studies which found that vitamin D deficiency or gonadal status is not related to the differences in gene expressions in patients with acromegaly.

Association of Vitamin D with IGF-1:

Serum levels of IGF-1 were highly significant increase in acromegaly patients compared with control group (P<0.001). According to related studies, it can be assumed that liver production of IGF-1 and IGFBP-3 is promoted by vitamin D via inducing relevant gene transcription directly and/or by enhancing GH stimulation.

Acromegaly could be caused by GH excessive excretion and IGF-1 levels elevation.

An exacerbate complications occurs if diagnosis delayed due to GH hypersecretion. Thus, timing is crucial in acromegaly clinical and biochemical diagnosis. Correlation between acromegaly-associated factors and serum IGF-1 has been noted, so serum IGF-1 levels should be measured when acromegaly is suspected. In acromegaly diagnosis, IGF-1 level is an ideal screening test rather than random GH levels because with low IGF-1 levels acromegaly is extremely rare.

Vitamin D and BMI:

Serum 25(OH)D3 affected by BMI could be explained by high contents of body fat that stores lipid-soluble vitamin D. In animal models, about 10-12% of vitamin D dose supplemented can be accumulated in adipose tissue, where vitamin D release is extremely slow from fat and related to vitamin concentration in the adipose tissue. This process may protect the body from vitamin D active forms toxicity effects and maintain optimal level in the blood; while extra body fat results in its low availability and elevated restoration and, as a result, low serum 25(OH)D levels.

Vitamin D and Calcium:

Acromegalic patients may have hypercalcemia, Shah et al. reported two diagnosed acromegaly cases have mild hypercalcemia with normal serum 1, 25(OH)D2 levels and total 25(OH)D. In the kidney, IGF-1 may have appositive influence on 1, 25(OH)D2 synthesis by stimulating 1-α hydroxylase activity. Same elevated levels 25(OH)D and 1, 25(OH)2D in active and inactive acromegaly patients with no hypercalcemia observed.

Our study agrees with other studies which revealed that total concentrations of 25(OH)D depend on alterations in VDBP levels.

Association of Vitamin D with Liver Function (GOT, GPT and ALP):

Target tissue for vitamin D production is liver that is considered essential source of circulating IGF-1. Serum GOT enzyme can associate with red blood cells, skeletal muscles action, heart muscles, brain and kidney; while GPT enzyme is associated with diseases incidence like hepatitis and cirrhosis. One of the previous studies suggested that GOT and GPT can also be associated in acromegaly occurrence. Our study agrees with previous studies in significant elevated GOT, GPT and ALP activity levels in acromegalic patients. Another study showed that pituitary surgery in patients with acromegaly led to significant decrease in GPT levels.

Association of Vitamin D with T3, T4 and TSH:

Our studyrevealed significant increase levels of T4 and TSH in patients group G2 in comparison with control group G1, while T3 levels decreased; these results doesn't agree with those reported by Muscogiuri and Carnevale that didn’t discover any correlation between vitamin D and PTH. However, many studies
showed that acromegalic patients are at increased incidence of thyroid cancer and thyroid nodular disease (32). Previous studies have shown increase (33), decrease (34) or no change (35) in PTH levels after treatment of acromegaly in consistencies that may reflect the single time point sampling methodology used in the study.

Association of Kidney Function (Urea and Creatinine) with Vitamin D:

This study shows non-significant increase in urea levels (P>0.05) among acromegaly patients group in comparison with control group, and highly significant increase in creatinine levels (P<0.001). Impairment of any functions of kidney is usually indicated with high value of creatinine; while blood urea nitrogen (BUN) alteration indicates chronic and acute renal disease, so our result doesn’t agree with Kamenicky (9) that found concentration of creatinine was lower before patient’s acromegaly treatment.

References

18. Dr.Katznelson L., Neuroendocrine Unit, 2001, Massachusetts General Hospital, 55 Fruit Street – BUL 457B, Boston, MA 02114–2696, USA.

